1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
   | x = tf.placeholder(tf.float32, [None, 3072]) y = tf.placeholder(tf.int64, [None])
  x_image = tf.reshape(x, [-1, 3, 32, 32]) x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])
 
  conv1 = tf.layers.conv2d(     x_image,       32,       (3, 3),       padding='same',       activation=tf.nn.relu,     name='conv1' )
  polling1 = tf.layers.max_pooling2d(     conv1,       (2, 2),       (2, 2),       name='pool1' ) conv2 = tf.layers.conv2d(     polling1,     32,       (3, 3),       padding='same',       activation=tf.nn.relu,     name='conv2' )
  polling2 = tf.layers.max_pooling2d(     conv2,       (2, 2),       (2, 2),       name='pool2' ) conv3 = tf.layers.conv2d(     polling2,     32,       (3, 3),       padding='same',       activation=tf.nn.relu,     name='conv3' )
  polling3 = tf.layers.max_pooling2d(     conv3,       (2, 2),       (2, 2),       name='pool3' )
 
  flatten = tf.layers.flatten(polling3) y_ = tf.layers.dense(flatten, 10)
   |